A Shift Operator on L(h 2)

نویسندگان

  • YUN-SU KIM
  • M. B. Abrahamse
چکیده

We give definitions and some properties of the shift operator SL(H2) and multiplication operator on L(H ). In addition, we obtain some properties of the commutant of the shift operator SL(H2) and characterize SL(H2)-invariant subspaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

Spectral Radius Algebras and Shift

We consider spectral radius algebras associated to operators of the form h(S), where h ∈ H∞ and S is the unilateral shift. We show that, for a large class of H∞ functions, Bh(S) is weakly dense in LH. In this paper we continue the study of the spectral radius algebras (SRA) initiated in [2]. These algebras represent a very interesting class of non-selfadjoint, non-closed operator algebras. Furt...

متن کامل

Frames and Stable Bases for Shift-invariant Subspaces of L 2 (ir D ) Frames and Stable Bases for Shift-invariant Subspaces of L 2 (ir D )

Let X be a countable fundamental set in a Hilbert space H, and let T be the operator T : `2(X)! H : c 7! X

متن کامل

SHIFT OPERATOR FOR PERIODICALLY CORRELATED PROCESSES

The existence of shift for periodically correlated processes and its boundedness are investigated. Spectral criteria for these non-stationary processes to have such shifts are obtained.

متن کامل

Spectral Shift Function of the Schrr Odinger Operator in the Large Coupling Constant Limit, Ii. Positive Perturbations

For the operator ?4 in L 2 (R d), d 1, a perturbation potential V (x) 0, and a coupling constant > 0, the spectral shift function (; ?4 + V; ?4) is considered. Assuming that V (x) decays as jxj ?l , l > d, for large x, we prove that the leading term of the asymp-totics of the spectral shift function as ! 1 has the form C d=l , where the coeecient C = C(d; l) is explicitly computed. The asymptot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006